Ambient Gas-Particle Partitioning of Tracers for Biogenic Oxidation

2016 
Exchange of atmospheric organic compounds between gas and particle phases is important in the production and chemistry of particle-phase mass but is poorly understood due to a lack of simultaneous measurements in both phases of individual compounds. Measurements of particle- and gas-phase organic compounds are reported here for the southeastern United States and central Amazonia. Polyols formed from isoprene oxidation contribute 8% and 15% on average to particle-phase organic mass at these sites but are also observed to have substantial gas-phase concentrations contrary to many models that treat these compounds as nonvolatile. The results of the present study show that the gas-particle partitioning of approximately 100 known and newly observed oxidation products is not well explained by environmental factors (e.g., temperature). Compounds having high vapor pressures have higher particle fractions than expected from absorptive equilibrium partitioning models. These observations support the conclusion that ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    53
    Citations
    NaN
    KQI
    []