A Semianalytical Two-Phase Imbibition Model in Dual-Porosity and Dual-Permeability Reservoirs

2021 
The pressure transient behavior of water injection well has been extensively investigated under single-phase flow conditions. However, when water is injected into formation, there are saturation gradients within the water flooded area. Additionally, water imbibition is essentially important for oil displacement in dual-porosity and dual-permeability (DPDP) reservoirs. In this work, a novel semianalytical two-phase flow DPDP well test model considering both saturation gradient and water imbibition has been developed. The model was solved by the Laplace transform finite difference method. Type curves were generated, and flow regimes were identified by the model. The model features and effect of parameters were analyzed. Results show that water imbibition reduces the advancing speed of water drive front in the fracture system and slows down the water cut raising rate and the expansion speed of the two-phase zone in the fracture system. Therefore, the fluid exchange between the fracture and matrix systems becomes more sufficient and more oil will be recovered from the DPDP reservoir. The shape of pressure curves is similar for the single-phase and two-phase flow DPDP model, but the position of the proposed model is above the curves of the single-phase model. Shape factor mainly influences the interporosity period of the pressure derivatives. Water imbibition has a major effect on the whole system radial flow period of the curves. The findings of this study can help for better understanding of the oil/water two-phase flow pressure transient behavior in DPDP reservoirs considering saturation gradients and water imbibition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []