Small Scale Hydrogen Production from Metal-Metal Oxide Redox Cycles

2012 
The industrial production of hydrogen by reforming natural gas is well established. However, this process is energy intensive and process economics are adversely affected as scale is decreased. There are many situations where a smaller supply of hydrogen, sometimes in remote locations, is required. To this end, the steam-iron process, an originally coal-based process, has been re-considered as an alternative. Many recent investigations have shown that hydrogen (H2) can be produced when methane (CH4) is used as the feedstock under carefully controlled process conditions. The chemistry driving this chemical looping (CL) process involves the reduction of metal oxides by methane and the oxidation of lower oxidation state metal oxides with steam. This process utilises oxygen from oxide materials that are able to transfer oxygen and eliminates the need of purified oxygen for combustion. Such a system has the potential advantage of being less energy intensive than reforming processes and of being flexible enough for decentralised hydrogen production from stranded reserves of natural gas. This chapter first reviews the existing hydrogen production technologies then highlights the recent progress made on hydrogen production from small scale CL processes. The development of oxygen carrier materials will also be discussed. Finally, a preliminary economic appraisal of the CL process will be presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    6
    Citations
    NaN
    KQI
    []