Real-time exciton dynamics with time-dependent density-functional theory.

2021 
Linear-response time-dependent density-functional theory (TDDFT) can describe excitonic features in the optical spectra of insulators and semiconductors, using exchange-correlation (xc) kernels behaving as $-1/k^{2}$ to leading order. We show how excitons can be modeled in real-time TDDFT, using an xc vector potential constructed from approximate, long-range corrected xc kernels. We demonstrate for various materials that this real-time approach is consistent with frequency-dependent linear response, gives access to femtosecond exciton dynamics following short-pulse excitations, and can be extended with some caution into the nonlinear regime.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    3
    Citations
    NaN
    KQI
    []