Application of Classical Resolution for Separation of DL‐Serine

2010 
For resolution of chiral compound-forming substances diastereomeric salt formation is the most important classical separation technique. Diastereomeric salts possess different physical and chemical properties, e.g., solubilities, which facilitate the effective separation via crystallization. A maximum recovery of both diastereomeric salts is usually unachievable when there is a lack of quantitative information regarding solubility and metastable zone width. The present work provides experimental results for the formation of diastereomeric salts of DL-serine. As basic thermodynamic data binary melting and ternary solubility phase diagrams are shown and discussed. A plan for a series of crystallization processes is suggested for the recovery of both salts in pure form with a maximum possible yield.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    8
    Citations
    NaN
    KQI
    []