Effects of dietary conjugated linoleic acid on metabolic status, BW and expression of genes related to lipid metabolism in adipose tissue of dairy cows during peripartum
2021
Conjugated linoleic acid (CLA) dietary supplementation reduces milk fat content and yield, but its effects on lipid metabolism and energy status remain controversial. The objective of this study was to investigate the effects of dietary CLA on adipose tissue (AT) mRNA abundance of genes related to lipid metabolism, plasma indicators of metabolic status, body condition score (BCS) and BW changes in dairy cows. Sixteen multiparous Holstein cows (3.2 ± 1.4 lactations, 615 ± 15 kg BW) were randomly assigned to treatments: 1) CLA; rumen-protected CLA (75 g/d) or 2) Control; equivalent amount of rumen inert fatty acid (FA) as the previous diet (78 g/d), from -20.2 ± 3.2 (mean ± SEM) to 21d relative to calving (d 0). Subcutaneous AT was biopsied from the tail-head region at d 21 to determine the mRNA abundance of genes related to lipid metabolism. Blood samples were collected at -20.2 ± 3.2, 0, 7, 14 and 21d relative to calving to determine plasma non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHBA), insulin and glucose. Conjugated linoleic acid decreased milk fat yield and milk fat content by 15 and 16%, respectively. Cows fed CLA had lower plasma NEFA and BHBA and greater glucose and insulin concentrations (P < 0.05). Mean BCS at 21d postpartum was greater (P < 0.01; 2.89 vs 2.25), and BCS loss from the day of enrollment to 21d postpartum was reduced (P < 0.01; -0.13 vs -0.64) in the CLA group. The expression of acylcoenzyme A oxidase, carnitine palmitoyltransferase 1A, hormone-sensitive lipase, β2 adrenergic receptor and acetyl-CoA carboxylase was downregulated by CLA supplementation, whereas the expression of sterol regulatory element binding protein, lipoprotein lipase and peroxisome proliferator-activated receptor gamma was upregulated (P < 0.01). In summary, CLA-supplemented cows showed signs of better metabolic status and less severe fat mobilization. Moreover, CLA increased mRNA abundance of genes related to lipogenesis and decreased mRNA abundance of genes related to FA oxidation and lipolysis in the AT of dairy cows during early lactation.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
41
References
0
Citations
NaN
KQI