A Theoretical and Empirical Investigation of Design Characteristics in a Pb(Zr,Ti)O3-Based Piezoelectric Accelerometer.

2020 
A theoretical and experimental study on the design-to-performance characteristics of a compression-mode Pb(Zr,Ti)O3-based piezoelectric accelerometer is presented. Using the metamodeling to approximate the relationship between the design variables and the performances, the constituent components were optimized so that the generated electric voltage, representing sensitivity, could be maximized at different set values of the resonant frequency (25-40 kHz). Four kinds of optimized designs were created and fabricated into the accelerometer modules for empirical validation. The accelerometer modules fabricated according to the optimized designs were highly reliable with a broad range of resonant frequency as well as sufficiently high values of charge sensitivity. The fixed (or mounted) resonant frequency was between 16.1-30.1 kHz based on the impedance measurement. The charge sensitivity decreased from 296.8 to 79.4 pC/g with an increase of the resonant frequency, showing an inverse relation with respect to the resonant frequency. The design-dependent behaviors of the sensitivity and resonant frequency were almost identical in both numerical analysis and experimental investigation. This work shows that the piezoelectric accelerometer can be selectively prepared with best outcomes according to the requirements for the sensitivity and resonant frequency, fundamentally associated with trade-off relation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    0
    Citations
    NaN
    KQI
    []