Revealing Cooperation between Knotted Conformationand Dimerization in Protein Stabilization by Molecular Dynamics Simulations

2019 
The topological knot is thought to play a stabilizing role in maintaining the global fold and nature of proteins with the underlying mechanism yet to be elucidated. Given that most proteins containing trefoil knots exist and function as homodimers with a large part of the dimer interface occupied by the knotted region, we reason that the knotted conformation cooperates with dimerization in protein stabilization. Here, we take YbeA from Escherichia coli as the knotted protein model, using molecular dynamics (MD) simulations to compare the stability of two pairs of dimeric proteins having the same sequence and secondary structures but differing in the presence or absence of a trefoil knot in each subunit. The dimer interface of YbeA is identified to involve favorable contacts among three α-helices (α1, α3, and α5), one of which (α5) is threaded through a loop connected with α3 to form the knot. Upon removal of the knot by appropriate change of the knot-making crossing of the polypeptide chain, relevant doma...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    10
    Citations
    NaN
    KQI
    []