Buried dopant and defect layers for device structures with high-energy ion implantation

1989 
Abstract Recent developments in the use of megavolt ion implantation for fabricating microelectronics structures are presented. Deep buried dopant implanted layers offer major advantages in: (1) processing simplicity, (2) low thermal budget, and (3) process flow flexibility for both CMOS and bipolar integrated circuits. Dopant profile design issues such as vertical and lateral straggles of high-energy implants are shown to be important for future scaling of device dimensions. The use of deep-buried defect layers created by high-energy implants (e.g. O and C) has many useful VLSI applications such as proximity gettering of impurities and localized minotiry-carrier lifetime control. Improved VLSI frabrication yield and monolithic integration of signal-processing and power-circuits are expected with these buried defects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    42
    Citations
    NaN
    KQI
    []