Nitrogen-Doped Hierarchical Porous Carbon Promoted Adsorption of Anthraquinone for Long-life Organic Batteries.

2020 
Organic quinone molecules are attractive electrochemical energy storage devices due to their high abundance, multielectron reactions and structural diversity compared with transition-metal-oxide electrode materials. However, they have problems in poor cycle stability and low rate performance on account of the inherent low conductivity and high solubility in the electrolyte. Solving these two key problems at the same time can be challenging. Herein, we demonstrate using a nitrogen-doped hierarchical porous carbon (NC) with mixed microporous/low-range mesoporous can greatly alleviate the shuttle effect caused by the dissolution of organic molecules in the electrolyte through physical binding and chemisorption, thereby improving the electrochemical performances. Lithium-ion battery based on anthraquinone (AQ) electrode exhibits dramatic capacity decay (5.7% capacity retention at 0.2 C after 1000 cycles) and poor rate performance (14.2 mAh g-1 at 2 C). However, the lithium-ion battery based on NC@AQ cathode shows excellent cycle stability (60.5 % capacity retention at 0.2 C after 1000 cycles, 82.8 % capacity retention at 0.5 C after 1000 cycles), superior rate capability (152.9 mAh g-1 at 2 C), and outstanding energy efficiency (98% at 0.2 C). Our work offers a new approach to realize next-generation organic batteries for long life and high rate performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    2
    Citations
    NaN
    KQI
    []