Some Results for a Class of Kirchhoff-Type Problems with Hardy–Sobolev Critical Exponent

2019 
We study a class of Kirchhoff equations $$\begin{aligned} {\left\{ \begin{array}{ll} -\left( a+b\displaystyle \int _{\Omega }|\nabla u|^2\mathrm{d}x\right) \Delta u=\displaystyle \frac{u^{3}}{|x|}+\lambda u^{q},&{}\hbox {in } \Omega , \\ u=0, &{}\hbox {on } \partial \Omega , \end{array}\right. } \end{aligned}$$ where \(\Omega \subset {\mathbb {R}}^{3}\) is a bounded domain with smooth boundary and \(0\in \Omega \), \(a,b,\lambda >0,0 \frac{1}{A_{1}^{2}}\) (\(A_{1}>0\) is the best Sobolev–Hardy constant), using the critical point theorem, infinitely many pairs of distinct solutions are obtained for any \(\lambda >0.\)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    1
    Citations
    NaN
    KQI
    []