Quantum electrodynamics of a superconductor–insulator phase transition

2019 
A chain of Josephson junctions represents one of the simplest many-body models undergoing a superconductor–insulator quantum phase transition1,2. Apart from zero resistance, the superconducting state is necessarily accompanied by a sound-like mode due to collective oscillations of the phase of the complex-valued order parameter3,4. Little is known about the fate of this mode on entering the insulating state, where the order parameter’s amplitude remains non-zero, but the phase ordering is ‘melted’ by quantum fluctuations5. Here, we show that the phase mode survives far into the insulating regime, such that megaohm-resistance chains can carry gigahertz-frequency alternating currents as nearly ideal superconductors. The insulator reveals itself through interaction-induced broadening and random frequency shifts of collective mode resonances. Our spectroscopic experiment puts forward the problem of quantum electrodynamics of a Bose glass for both theory and experiment6–8. By pushing the chain parameters deeper into the insulating state, we achieved a wave impedance of the phase mode exceeding the predicted critical value by an order of magnitude9–14. The effective fine structure constant of such a one-dimensional electromagnetic vacuum exceeds unity, promising transformative applications to quantum science and technology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    18
    Citations
    NaN
    KQI
    []