Toxicity profiling of metallosurfactant based ruthenium and ruthenium oxide nanoparticles towards the eukaryotic model organism Saccharomyces cerevisiae

2020 
Abstract In the present study, a facile method was used to synthesize the ruthenium and ruthenium oxide (RuO2) nanoparticles (NPs) derived from three different metallosurfactants. Firstly, three metallosurfactants were fabricated i.e. RuCTAC (Bishexadecyltrimethylammonium ruthenium tetrachloride), RuDDA (Bisdodecylamine ruthenium dichloride), and RuHEXA (bishexadecylamine ruthenium dichloride) and characterized by CHN, FTIR, and 1HNMR. These metallosurfactants were further utilized to fabricate the mixed type of NPs (Ru and RuO2 NPs) using the biocompatible microemulsion technique and NPs were then characterized. Subsequently, the nanotoxicity of mixed NPs (Ru & RuO2) was studied towards Saccharomyces cerevisiae. The detailed study of nanotoxicity against the S. cerevisiae cells was done by employing optical microscopy, FESEM, anti-yeast activity assay, circular dichroism, and gel electrophoresis techniques. FESEM and optical microscopy analyses indicated that RuCTAC nanosuspension (Ns) has the most toxic effect on the S. cerevisiae cells. FESEM analysis confirmed the harmful impact of Ru and RuO2 NPs on the S. cerevisiae cells. From the FESEM analysis, complete alteration in the morphology, cell membrane breakage, and formation of the holes on the cell wall of S. cerevisiae was affirmed in presence of all three types of Ns i.e. RuCTAC, RuDDA, and RuHEXA Ns. Genotoxicity of the NPs was confirmed by circular dichroism and gel electrophoresis and it was found that RuCTAC and RuHEXA Ns have the most damaging influence on the yeast genomic DNA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []