Thermally Gated Bio-orthogonal Nanozymes with Supramolecularly Confined Porphyrin Catalysts for Antimicrobial Uses

2020 
Summary Bio-orthogonal catalysis has the capability of localized generation of imaging and therapeutic molecules in vitro and in vivo. The integration of these catalysts into thermoresponsive nanoparticle platforms would generate bio-orthogonal “nanozymes” that could be controlled through endogenous or exogenous thermal control. We have fabricated thermoresponsive nanozymes by confining supramolecular assemblies of porphyrins into the monolayer of gold nanoparticles. The resulting nanodevices feature an on-off gated thermal response occurring over a 3°C range with commensurate tunability of activation temperature from 25°C to 37°C. Reversible activation of catalysis was demonstrated in complex biological environments, and the efficacy of bi-stable thermoresponsive nanozymes demonstrated through thermal activation of antibiotic-based prodrugs to effectively treat bacterial biofilms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    21
    Citations
    NaN
    KQI
    []