Mutants of the deubiquitinating enzyme Ubp14 decipher pathway diversity of ubiquitin-proteasome linked protein degradation.

2006 
Selective proteolysis is an important regulatory mechanism in all cells. In eukaryotes, this process gains specificity by tagging proteins with the small protein ubiquitin. K48 linked polyubiquitin chains of four and more ubiquitin moieties target proteins for hydrolysis by the proteasome. Prior to degradation the polyubiquitin chain is removed from the protein, cleaved into single units, and recycled. The deubiquitinating enzyme Ubp14 is an important catalyst of this process. Mutants of Ubp14 had been shown to accumulate non-cleaved oligo- and polyubiquitin chains, which resulted in inhibition of overall ubiquitinproteasome linked proteolysis as well as in inhibition of degradation of some known substrates. Here we show that accumulation of ubiquitin chains due to defective Ubp14 does not uniformly lead to inhibition of ubiquitinproteasome linked protein degradation. Instead, inhibition of degradation depends on the substrate tested. The results indicate the existence of different paths through which proteins enter the proteasome.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    16
    Citations
    NaN
    KQI
    []