Edge and surface-emitting tilted cavity lasers

2005 
The Tilted Cavity (TC) concept has been proposed to combine advantages of edge- and surface-emitting lasers (detectors, amplifiers, switches, etc.). Tilted Cavity Lasers (TCL) enable wavelength-stabilized high-power edge and surface emitters (TCSEL) in low-cost single-epitaxial step design. The concept covers numerous applications including mode-locked TCL for light speed control, dispersion and linewidth engineering, GaN-based light-emitters, electrooptic wavelength tunable devices, and other applications. Presently, wavelength stabilized TC operation is realized between -200°C and 70°C in broad TCL diodes with cleaved facets based on quantum dots (QDs). The spectral width is below 0.6 nm in broad area 100 μm-wide-stipe devices. The far fields are: 4° (lateral) and 42° (vertical). Wavelength-stabilized 1.16 μm and 1.27 μm edge-emitting QD TCL lasers are demonstrated. Quantum well TCL demonstrate high-temperature operation up to 240°C with a low threshold, high temperature stability and improved wavelength stability. The tilted cavity approach can also be applied in wavelength-optimized photodetectors, switches, semiconductor optical amplifiers, including multi-channel devices, in optical fibers, in photodetectors, in light-emitting diodes and in many other applications. Moreover, microelectronic devices based on similar tilted angle resonance phenomena in quantum wells and superlattices can be realized in electron- or hole-wavefunction-engineered structures, thus, merging the fields of nanophotonics and nanoelectronics. The tilted cavity concept can be further complimented by lateral patterning and (or) processing of three-dimensional photonic crystal structures further extending horizons of modern optoelectronics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []