Bioinformatics analysis of dysregulated exosomal microRNAs derived from oral squamous cell carcinoma cells.

2021 
PURPOSE The present study aimed to identify dysregulated exosomal miRNAs associated with diagnostic and therapeutic biomarkers in oral squamous cell carcinoma (OSCC). METHODS Microarray analysis was used to compare expression profiles of exosomal miRNAs in the OSCC-derived cell lines HSC-2, HSC-3, Ca9-22, and HO-1-N1 with those in human normal keratinocytes (HNOKs). The identified OSCC-related miRNAs and their potential target genes were analyzed with bioinformatic analyses, and the data were subjected to Ingenuity Pathway Analysis (IPA) to clarify functional networks and gene ontologies of the identified exosomal miRNAs secreted by OSCC cells. RESULTS Comparison with HNOKs detected 8 upregulated and 12 downregulated miRNAs in OSCC-secreted exosomes. The potential target mRNAs of these dysregulated miRNAs were suggested by IPA, and 6 significant genetic networks were indicated by genetic network analysis. Furthermore, 4 crucial upstream miRNAs-miR-125b-5p, miR-17-5p, miR-200b-3p, and miR-23a-3p-were identified. miR-125b-5p was a central node in the most significant network. Gene ontology analysis showed significant enrichment of genes with cancer-related functions, such as molecular mechanisms of cancer, cell cycle, and regulation of the epithelial-mesenchymal transition. CONCLUSION These results provide a comprehensive view of the functions of dysregulated exosomal miRNAs in OSCC, thus illuminating OSCC tumorigenesis and development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []