Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass

2018 
Abstract Herein, we report on a combined process that incorporates hydrothermal liquefaction (HTL) and supercritical water gasification (SCWG) to improve energy recovered from algal biomass. Eight algal biomasses, including four microalgae and four macroalgae with a large difference in biochemical compositions, were screened for this dual process. The algal biomass feedstocks significantly affected the carbon and energy distribution in the product fractions (crude bio-oil, solid, gas, and water-soluble products). 62.50–71.34% energy of microalgae and 6.03–41.06% energy of macroalgae could be recovered as crude bio-oil. 11.86–21.55% carbon of the microalgae and 8.01–15.82% carbon of the macroalgae was distributed in the HTL process water in form of water soluble products after the HTL process. 14.3–33.7% energy of microalgae and 30.18–36.34% energy of macroalgae was retained in the HTL process water. SCWG could convert the organics in the HTL process water into fuel gases consisting mainly of H 2 and CH 4 . 54–91% carbon of the HTL process water was transformed into the fuel gases, which correspond 5.53–18.30% energy of the algal biomass. Thus, this work shows that the integration of HTL and SCWG could improve energy recovery from algal biomass relative to the HTL process alone.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    31
    Citations
    NaN
    KQI
    []