A statistical model to forecast short-term atlantic hurricane intensity

2007 
An alternative 24-h statistical hurricane intensity model is presented and verified for 13 hurricanes during the 2004–05 seasons. The model uses a new method involving a discriminant function analysis (DFA) to select from a collection of multiple regression equations. These equations were developed to predict the future 24-h wind speed increase and the 24-h pressure drop that were constructed from a dataset of 103 hurricanes from 1988 to 2003 that utilized 25 predictors of rapid intensification. The accuracy of the 24-h wind speed increase models was tested and compared with the official National Hurricane Center (NHC) 24-h intensity forecasts, which are currently more accurate on average than other 24-h intensity models. Individual performances are shown for Hurricanes Charley (2004) and Katrina (2005) along with a summary of all 13 hurricanes in the study. The average error for the 24-h wind speed increase models was 11.83 kt (1 kt 0.5144 m s 1 ) for the DFA-selected models and 12.53 kt for the official NHC forecast. When the DFA used the correctly selected model (CSM) for the same cases, the average error was 8.47 kt. For the 24-h pressure reduction models, the average error was 7.33 hPa for the DFA-selected models, and 5.85 hPa for the CSM. This shows that the DFA performed well against the NHC, but improvements can still be made to make the accuracy even better.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    13
    Citations
    NaN
    KQI
    []