Torque Generation of Enterococcus hirae V-ATPase
2014
V-ATPase (VoV1) converts the chemical free energy of ATP into an ion-motive force across the cell membrane via mechanical rotation. This energy conversion requires proper interactions between the rotor and stator in VoV1 for tight coupling among chemical reaction, torque generation, and ion transport. We developed an Escherichia coli expression system for Enterococcus hirae VoV1 (EhVoV1) and established a single-molecule rotation assay to measure the torque generated. Recombinant and native EhVoV1 exhibited almost identical dependence of ATP hydrolysis activity on sodium ion and ATP concentrations, indicating their functional equivalence. In a single-molecule rotation assay with a low load probe at high ATP concentration, EhVoV1 only showed the “clear” state without apparent backward steps, whereas EhV1 showed two states, “clear” and “unclear.” Furthermore, EhVoV1 showed slower rotation than EhV1 without the three distinct pauses separated by 120° that were observed in EhV1. When using a large probe, EhVoV1 showed faster rotation than EhV1, and the torque of EhVoV1 estimated from the continuous rotation was nearly double that of EhV1. On the other hand, stepping torque of EhV1 in the clear state was comparable with that of EhVoV1. These results indicate that rotor-stator interactions of the Vo moiety and/or sodium ion transport limit the rotation driven by the V1 moiety, and the rotor-stator interactions in EhVoV1 are stabilized by two peripheral stalks to generate a larger torque than that of isolated EhV1. However, the torque value was substantially lower than that of other rotary ATPases, implying the low energy conversion efficiency of EhVoV1.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
63
References
24
Citations
NaN
KQI