Sequence dependent conformations of glycidyl methacrylate/butyl methacrylate copolymers in the gas phase

2004 
Sequence dependent conformations of a series of glycidyl methacrylate/butyl methacrylate (GMA/BMA) copolymers cationized by sodium were analyzed in the gas phase using ion mobility methods. GMA and BMA have the same nominal mass but vary in exact mass by 0.036 Da (CH4 versus O). Matrix assisted laser desorption/ionization (MALDI) was used to form Na + (GMA/BMA) copolymer ions and their collision cross-sections were measured in helium using ion mobility methods. The copolymer sequences from Na + (GMA/BMA)3 to Na + (GMA/BMA)5 (i.e. for the trimer to the pentamer) were studied. Analysis by molecular mechanics/dynamics indicates that each copolymer (regardless of sequence) forms a ring around the sodium ions due to Na + /oxygen electrostatic interactions. However, the structures vary in size, since the epoxy oxygen atoms in the glycidyl groups are attracted to the sodium ions while the carbon-composed butyl groups are not. This allows copolymers with more GMA segments to fold tighter (more spherically) around the sodium ion and have smaller cross-sections than copolymers with a larger amount of BMA segments in the sequence. Due to this cross-sectional difference, the GMA/BMA sequence compositions of the trimer and tetramer could be quantified. © 2004 Elsevier B.V. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    14
    Citations
    NaN
    KQI
    []