Alternative lengthening of telomeres in childhood neuroblastoma from genome to proteome.

2021 
Telomere maintenance by telomerase activation or alternative lengthening of telomeres (ALT) is a major determinant of poor outcome in neuroblastoma. Here, we screen for ALT in primary and relapsed neuroblastomas (n = 760) and characterize its features using multi-omics profiling. ALT-positive tumors are molecularly distinct from other neuroblastoma subtypes and enriched in a population-based clinical sequencing study cohort for relapsed cases. They display reduced ATRX/DAXX complex abundance, due to either ATRX mutations (55%) or low protein expression. The heterochromatic histone mark H3K9me3 recognized by ATRX is enriched at the telomeres of ALT-positive tumors. Notably, we find a high frequency of telomeric repeat loci with a neuroblastoma ALT-specific hotspot on chr1q42.2 and loss of the adjacent chromosomal segment forming a neo-telomere. ALT-positive neuroblastomas proliferate slowly, which is reflected by a protracted clinical course of disease. Nevertheless, children with an ALT-positive neuroblastoma have dismal outcome. Alternative lengthening of telomeres (ALT) is associated with a poor outcome in neuroblastoma. Here, the authors find that ALT is associated with mutated ATRX and/or reduced protein abundance, frequent telomeric repeat loci and heterochromatic telomeric chromatin.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    82
    References
    26
    Citations
    NaN
    KQI
    []