Proteomic profiling of the surface-exposed cell envelope proteins of Caulobacter crescentus☆

2014 
Abstract Biotinylation of intact cells, avidin enrichment of derivatized peptides, and shotgun proteomics were employed to reveal the composition of the surface-exposed proteome of the aquatic bacterium, Caulobacter crescentus . Ninety-one unique proteins were identified with the majority originating from the outer membrane, periplasm, and inner membrane, subcellular regions that comprise the Gram-negative bacterium cell envelope. Many of these proteins were described as ‘conserved hypothetical protein’ or ‘hypothetical protein’; and so, the actual expression of these gene products was confirmed. Others did not have any known function or lacked annotation. However, this investigation of the Caulobacter surfaceome did reveal the unanticipated presence of a number of enzymes involved in protein degradation. Biological significance The results presented here can provide a starting point for hypothesis-driven research projects focused on this bacterium in particular and centered on understanding Gram-negative cell architecture and outer membrane biogenesis broadly. The detected protein degradation enzymes anchored on or located within the outer membrane suggest that Caulobacter has nutrient sources larger than small molecules and/or further processes surface proteins once secreted to this location. Additionally, confirmation of outer membrane residency of those proteins predicted to be periplasmic or whose location prediction was not definitive could potentially elucidate the identities of Gram-negative specific anchorless surface proteins. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    14
    Citations
    NaN
    KQI
    []