On the Use of Graphics Processing Units (GPUs) for Molecular Dynamics Simulation of Spherical Particles
2013
General-purpose computation on Graphics Processing Units (GPU) on personal computers has recently become an attractive alternative to parallel computing on clusters and supercomputers. We present the GPU-implementation of an accurate molecular dynamics algorithm for a system of spheres. The new hybrid CPU-GPU implementation takes into account all the degrees of freedom, including the quaternion representation of 3D rotations. For additional versatility, the contact interaction between particles is defined using a force law of enhanced generality, which accounts for the elastic and dissipative interactions, and the hard-sphere interaction parameters are translated to the soft-sphere parameter set. We prove that the algorithm complies with the statistical mechanical laws by examining the homogeneous cooling of a granular gas with rotation. The results are in excellent agreement with well established mean-field theories for low-density hard sphere systems. This GPU technique dramatically reduces user waiting time, compared with a traditional CPU implementation.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
6
References
6
Citations
NaN
KQI