Long-lifetime, potentially low-cost anthraquinone flow battery chemistry developed from study of effects of water-solubilizing group and connection to core

2021 
Water-soluble anthraquinones (AQs) hold great promise serving as redox-active species in aqueous organic redox flow batteries. Systematic investigations into how the properties of redox molecules depend on the water-solubilizing groups and the way in which they are bound to the redox core are, however, still lacking. We introduce water-solubilizing groups linked to anthraquinone by C=C bonds via Heck cross-coupling reactions and convert C=C bonds to CC bonds through hydrogenation. The anthraquinone and the ending groups are connected via branched or straight chains with either unsaturated or saturated bonds. We investigate the influence of water-solubilizing chains and ionic ending groups on redox potentials of molecules and identify three important trends. (1): The electron-withdrawing ending groups can affect redox potentials of AQs with two unsaturated hydrocarbons on the chains through π-conjugation. (2): For chains with two saturated or unsaturated straight hydrocarbons, water-solubilizing ending groups increase redox potentials of the AQs in the order of PO32
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []