Isotope Effects in the Predissociation of Excited States of N2+ Produced by Photoionization of 14N2 and 15N2 at Energies Between 24.2 and 25.6 eV

2019 
Abstract Photoelectron/photoion imaging spectrometry employing dispersed VUV radiation from the SOLEIL synchrotron has been used to study the predissociation of N2+ states located up to 1.3 eV above the ion’s first dissociation limit. Branching ratios for unimolecular decay into either N2+ or N+ were obtained by measuring coincidences between threshold electrons and mass-selected product ions, using a supersonic beam of either 14N2 or 15N2 as photoionization target. The results confirm that predissociation of the C2Σu+ state of 14N2+ is faster than emission to the electronic ground-state by a factor 10 or more for all vibrational levels v’≥3, while for 15N2+ the two decay modes have comparable probabilities for the levels v ’= 3, 4, and 5. In contrast, no significant isotope effect could be observed for the other states of N2+ identified in the photoelectron spectrum. For both 14N2+ and 15N2+ isotopologues all vibrational levels of these other states decay to an extent of at least 95% by predissociation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    5
    Citations
    NaN
    KQI
    []