Microwave Irradiation of Ethanol-fixed Bone Improves Preservation, Reduces Processing Time, and Allows Both Light and Electron Microscopy on the Same Sample

2004 
SUMMARY Methylmethacrylate (MMA) embedding is routinely used for histomorphometry of undecalcified bone preserved by prolonged immersion in ethanol, a procedure that yields poor ultrastructural detail. Because microwave irradiation (MWI) facilitates penetration of fixatives, we have investigated whether it can improve preservation by ethanol. Rat tibiae, some labeled with tetracycline, and a human iliac crest biopsy were immersed in 70% ethanol and dehydrated, both under MWI, for a total processing time of � 7 hr. Controls were not irradiated, and all specimens were embedded in MMA at 4C. They were then processed for histomorphometry, histochemistry, structural analysis, and immunolabeling. The results showed that histological preservation was improved with MWI. Static bone formation and resorption parameters and rate of mineral apposition were similar to those of conventionally processed specimens. Mineral distribution, as visualized by von Kossa staining and backscattered electron imaging, was not affected. Alkaline phosphatase and tartrate-resistant acid phosphatase activity, as well as immunolocalization of bone sialoprotein and osteopontin, were readily visualized. Ultrastructurally, osteopontin exhibited a typical distribution in mineralization foci, between calcified collagen fibrils, and at cement lines. These data show that MWI improves preservation and permits application of a broad spectrum of analytical methodologies on the same bone sample while considerably reduc
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    20
    Citations
    NaN
    KQI
    []