Chance-constrained quasi-convex optimization with application to data-driven switched systems control.

2021 
We study quasi-convex optimization problems, where only a subset of the constraints can be sampled, and yet one would like a probabilistic guarantee on the obtained solution with respect to the initial (unknown) optimization problem. Even though our results are partly applicable to general quasi-convex problems, in this work we introduce and study a particular subclass, which we call "quasi-linear problems". We provide optimality conditions for these problems. Thriving on this, we extend the approach of chance-constrained convex optimization to quasi-linear optimization problems. Finally, we show that this approach is useful for the stability analysis of black-box switched linear systems, from a finite set of sampled trajectories. It allows us to compute probabilistic upper bounds on the JSR of a large class of switched linear systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []