Arterial vasodilation drives convective fluid flow in the brain: a poroelastic model

2021 
The movement of fluid into, through, and out of the brain plays an important role in clearing metabolic waste. However, there is controversy regarding the mechanisms driving fluid movement, and whether the movement metabolic waste is primarily driven by diffusion or convection. The dilation of penetrating arterioles in the brain in response to increases in neural activity (neurovascular coupling) is an attractive candidate for driving fluid circulation, as it drives deformation of the brain tissue and of the paravascular space around arteries, resulting in fluid movement. We simulated the effects of vasodilation on fluid movement into and out of the brain using a novel poroelastic model of brain tissue. We found that arteriolar dilations could drive convective flow through the brain radially outward from the arteriole, and that this flow is sensitive to the dynamics of the dilation. Simulations of sleep-like conditions, with larger vasodilations and increased extracellular volume in the brain showed enhanced movement of fluid from the paravascular space into the brain. Our simulations suggest that both sensory-evoked and sleep-related arteriolar dilations can drive convective flow of cerebrospinal fluid from the paravascular space into the brain tissue around arterioles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    115
    References
    0
    Citations
    NaN
    KQI
    []