Shortest Reconfiguration of Colorings Under Kempe Changes.

2020 
A k-coloring of a graph maps each vertex of the graph to a color in {1, 2, …, k}, such that no two adjacent vertices receive the same color. Given a k-coloring of a graph, a Kempe change produces a new k-coloring by swapping the colors in a bicolored connected component. We investigate the complexity of finding the smallest number of Kempe changes needed to transform a given k-coloring into another given k-coloring. We show that this problem admits a polynomial-time dynamic programming algorithm on path graphs, which turns out to be highly non-trivial. Furthermore, the problem is NP-hard even on star graphs and we show that on such graphs it admits a constant-factor approximation algorithm and is fixed-parameter tractable when parameterized by the number k of colors. The hardness result as well as the algorithmic results are based on the notion of a canonical transformation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []