Downregulated XPA promotes carcinogenesis of bladder cancer via impairment of DNA repair

2017 
Bladder cancer is the most common malignant tumor of urinary system, largely resulting from failure of repair of DNA damage to the environmental insults. The function of XPA in nucleotide excision repair pathway has been well documented. However, participation of XPA in the repair of DNA double-strand break remains unknown. Here, we reported that bladder cancer expressed low XPA levels compared to adjacent non-tumor bladder tissue, and this phenotype was closely associated with chromosomal aberrations. Moreover, downregulated XPA appeared to increase incidence of chromosome aberration. XPA reduction increased cell viability of a bladder cancer cell line RT4, while XPA re-expression decreased the cell viability of RT4 cells. Since high mutation frequency is the basis of mutations of oncogenes and anti-oncogenes, and may be the essence of bladder cancer susceptibility, our study suggests that downregulated XPA may promote carcinogenesis of bladder cancer via impairment of DNA repair.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    11
    Citations
    NaN
    KQI
    []