A novel solid-phase extraction for the concentration of sweeteners in water and analysis by ion-pair liquid chromatography-triple quadrupole mass spectrometry.

2013 
Abstract A highly sensitive method for the simultaneous trace (ng/L) quantification of seven commonly used artificial sweeteners in a variety of water samples using solid-phase extraction and ion-pair high-performance liquid chromatography (HPLC) triple quadrupole mass spectrometer with an electrospray ionization source (ESI-MS) in negative ion multiple reaction monitoring mode was developed. Ten solid phase extraction (SPE) cartridges were tested to evaluate their applicability for the pre-concentration of the analytes, and their loading and eluting parameters were optimized. Satisfactory recoveries (77–99%) of all of the studied sweeteners were obtained using a Poly-Sery PWAX cartridge with 25 mM sodium acetate solution (pH 4) as wash buffer and methanol containing 1 mM tris (hydroxymethyl) amino methane (TRIS) as eluent. The method is sound and does not require pH adjustment or buffering of water samples. The HPLC separation was performed on an Athena C18-WP column with water and acetonitrile, both containing 5 mM ammonium acetate and 1 mM TRIS as mobile phases, in gradient elution mode. The linearity, precision, and accuracy of the method were evaluated, and good reproducibility was obtained. Method quantification limits varied between 0.4 and 7.5 ng/L for different water samples. The post-extraction spike method was applied to assess matrix effects, and quantification was achieved using internal standard calibration to overcome the unavoidable matrix effects during ESI-MS analysis. The method was applied to the analysis of thirteen water samples from Tianjin, China, including wastewater, tap water, surface water, and groundwater. The method described here is time-saving, accurate and precise, and is suitable for monitoring artificial sweeteners in different water matrices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    54
    Citations
    NaN
    KQI
    []