Delta-net: Real-time Network Verification Using Atoms

2017 
Real-time network verification promises to automatically detect violations of network-wide reachability invariants on the data plane. To be useful in practice, these violations need to be detected in the order of milliseconds, without raising false alarms. To date, most real-time data plane checkers address this problem by exploiting at least one of the following two observations: (i) only small parts of the network tend to be affected by typical changes to the data plane, and (ii) many different packets tend to share the same forwarding behaviour in the entire network. This paper shows how to effectively exploit a third characteristic of the problem, namely: similarity among forwarding behaviour of packets through parts of the network, rather than its entirety. We propose the first provably amortized quasi-linear algorithm to do so. We implement our algorithm in a new real-time data plane checker, Delta-net. Our experiments with SDN-IP, a globally deployed ONOS software-defined networking application, and several hundred million IP prefix rules generated using topologies and BGP updates from real-world deployed networks, show that Delta-net checks a rule insertion or removal in approximately 40 microseconds on average, a more than 10X improvement over the state-of-the-art. We also show that Delta-net eliminates an inherent bottleneck in the state-of-the-art that restricts its use in answering Datalog-style "what if" queries.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    13
    Citations
    NaN
    KQI
    []