Stress distribution and development within geosynthetic-reinforced soil slopes

2012 
ABSTRACT: Numerical methods combined with centrifuge tests are used to investigate the distribution and development of soil stresses and reinforcement tensile loads in geosynthetic-reinforced soil (GRS) structures. In this study, system stability indicated by the factor of safety (FS) of GRS slopes is calculated by limit equilibrium analysis. Stress information under various stress states is evaluated using finite element analysis. Advanced models and an integration algorithm are implemented in finite element code to enhance the simulation results. The proposed numerical models are validated by centrifuge tests of two GRS slopes with different backfill densities. Numerical results indicate that soil stress mobilisation can be described by the soil stress level S, which is defined as the ratio of the current stress status to peak failure criteria. For both slope models, as loading increases, backfill stresses develop and propagate along the potential failure surface. Mobilisation of soil stress was non-uni...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    27
    Citations
    NaN
    KQI
    []