Mechanical ventilation in healthy mice induces reversible pulmonary and systemic cytokine elevation with preserved alveolar integrity : An in vivo model using clinical relevant ventilation settings

2007 
Background: Mechanical ventilation (MV) may activate the innate immune system, causing the release of cytokines. The resulting proinflammatory state is a risk factor for ventilatorinduced lung injury. Cytokine increase results from direct cellular injury but may also result from cyclic stretch alone as demonstrated in vitro: mechanotransduction. To study mechanotransduction in vivo, the authors used an animal MV model with clinically relevant ventilator settings, avoiding alveolar damage. Methods: Healthy C57BL6 mice (n 82) were ventilated (tidal volume, 8 ml/kg; positive end-expiratory pressure, 4 cm H2O; fraction of inspired oxygen, 0.4) for 30, 60, 120, and 240 min. Assigned animals were allowed to recover for 2 days after MV. Both pulmonary tissue and plasma interleukin (IL)-1, IL-1, tumor necrosis factor , IL-6, IL-10, and keratinocyte-derived chemokine levels were measured. Histopathologic appearance of lung tissue was analyzed by light microscopy and electron microscopy. Results: In lung tissue, all measured cytokines and keratinocyte-derived chemokine levels increased progressively with MV duration. Light microscopy showed increased leukocyte influx but no signs of alveolar leakage or albumin deposition. Electron microscopy revealed intact epithelial cell and basement membranes with sporadically minimal signs of partial endothelial detachment. In plasma, increased levels of IL-1, tumor necrosis factor , IL-6, and keratinocyte-derived chemokine were measured after MV. In the recovery animals, cytokine levels had normalized and no histologic alterations could be found. Conclusions: Mechanical ventilation induces reversible cytokine increase and leukocyte influx with preserved tissue integrity. This model offers opportunities to study the pathophysiologic mechanisms behind ventilator-induced lung injury and the contribution of MV to the “multiple-hit” concept. MECHANICAL ventilation (MV) is widely used in general anesthesia and is a lifesaving intervention in critically ill patients. It can, however, induce lung injury in the healthy lung or exacerbate damage in the already injured lung. This has been termed ventilator-induced lung injury (VILI). 1,2 Clinical studies show that the use of large
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    87
    Citations
    NaN
    KQI
    []