Herbicidal Activity of Monoterpenes Is Associated with Disruption of Microtubule Functionality and Membrane Integrity

2017 
Aromatic plants and their volatile compounds affect seed germination and plant growth, and therefore hold potential for agriculture uses as plant growth regulators and bioherbicides. In the present study 17 major monoterpenes were selected, and their mechanisms of plant toxicity were elucidated using transgenic Arabidopsis thaliana at various growth stages. Microtubulin and the plant cell membrane were identified as the focal targets through which phytotoxicity and herbicidal activity acted. Variability in monoterpene mechanisms was observed. Limonene and (+)-citronellal had strong antimicrotubule efficacy, whereas citral, geraniol, (-)-menthone, (+)-carvone, and (-)-citronellal demonstrated moderate antimicrotubule efficacy. Pulegone, (-)-carvone, carvacrol, nerol, geranic acid, (+)/(-)-citronellol, and citronellic acid lacked antimicrotubule capacity. An enantioselective disruption of microtubule assembly was recorded for (+)/(-)-citronellal and (+)/(-)-carvone. The (+) enatiomers were more potent than ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    21
    Citations
    NaN
    KQI
    []