The two-exponential Liouville theory and the uniqueness of the three-point function

2000 
Abstract It is shown that in the two-exponential version of Liouville theory the coefficients of the three-point functions of vertex operators can be determined uniquely using the translational invariance of the path integral measure and the self-consistency of the two-point functions. The result agrees with that obtained using conformal bootstrap methods. Reflection symmetry and a previously conjectured relationship between the dimensional parameters of the theory and the overall scale are derived.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    13
    Citations
    NaN
    KQI
    []