Cell Volume Regulation Modulates NLRP3 Inflammasome Activation

2012 
Summary Cell volume regulation is a primitive response to alterations in environmental osmolarity. The NLRP3 inflammasome is a multiprotein complex that senses pathogen- and danger-associated signals. Here, we report that, from fish to mammals, the basic mechanisms of cell swelling and regulatory volume decrease (RVD) are sensed via the NLRP3 inflammasome. We found that a decrease in extracellular osmolarity induced a K + -dependent conformational change of the preassembled NLRP3-inactive inflammasome during cell swelling, followed by activation of the NLRP3 inflammasome and caspase-1, which was controlled by transient receptor potential channels during RVD. Both mechanisms were necessary for interleukin-1β processing. Increased extracellular osmolarity prevented caspase-1 activation by different known NLRP3 activators. Collectively, our data identify cell volume regulation as a basic conserved homeostatic mechanism associated with the formation of the NLRP3 inflammasome and reveal a mechanism for NLRP3 inflammasome activation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    247
    Citations
    NaN
    KQI
    []