De novo gene signature identification from single-cell RNA-seq with hierarchical Poisson factorization.

2019 
Common approaches to gene signature discovery in single cell RNA-sequencing (scRNA-seq) depend upon predefined structures like clusters or pseudo-temporal order, require prior normalization, or do not account for the sparsity of single cell data. We present single cell Hierarchical Poisson Factorization (scHPF), a Bayesian factorization method that adapts Hierarchical Poisson Factorization for de novo discovery of both continuous and discrete expression patterns from scRNA-seq. scHPF does not require prior normalization and captures statistical properties of single cell data better than other methods in benchmark datasets. Applied to scRNA-seq of the core and margin of a high-grade glioma, scHPF uncovers marked differences in the abundance of glioma subpopulations across tumor regions and subtle, regionally-associated expression biases within glioma subpopulations. scHFP revealed an expression signature that was spatially biased towards the glioma-infiltrated margins and associated with inferior survival in glioblastoma.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    7
    Citations
    NaN
    KQI
    []