Modulation of ERK1/MAPK3 potentiates ERK nuclear signalling, facilitates neuronal cell survival and improves memory in mouse models of neurodegenerative disorders

2018 
Cell signalling mechanisms are central to neuronal activity and their dysregulation may lead to neurodegenerative processes and associated cognitive decline. So far, a major effort has been directed toward the dissection of disease specific pathways with the still unmet promise to develop precision medicine strategies. With a different approach, here we show that a selective genetic potentiation of neuronal ERK signalling prevents cell death in vitro and in vivo in the mouse brain while ERK attenuation does the opposite. This neuroprotective effect can also be induced pharmacologically by a cell permeable peptide mimicking the loss of ERK1 MAP kinase, leading to a selective enhancement of ERK2 mediated nuclear cell signalling. The drug treatment prevents neurodegeneration in mouse models of Huntington9s (HD), Alzheimer9s (AD), and Parkinson9s disease (PD). Importantly, the selective potentiation of ERK2 signalling facilitates both structural and synaptic plasticity, enhances cognition in healthy mice and rescues mild cognitive impairments in both models of AD and HD. Altogether, our observation truly represents a remarkable example of a shared molecular mechanism across multiple neurodegenerative disorders and a potentially valuable therapeutic target for neuro-enhancement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []