Interfacial silicide formation and stress evolution during sputter deposition of ultrathin Pd layers on a-Si

2019 
Synchrotron experiments combining real-time stress, X-ray diffraction, and X-ray reflectivity measurements, complemented by in situ electron diffraction and photon electron spectroscopy measurements, revealed a detailed picture of the interfacial silicide formation during deposition of ultrathin Pd layers on amorphous silicon. Initially, an amorphous Pd2Si interlayer is formed. At a critical thickness of 2.3 nm, this layer crystallizes and the resulting volume reduction leads to a tensile stress buildup. The [111] textured Pd2Si layer continues to grow up to a thickness of ≈3.7 nm and is subsequently covered by a Pd layer with [111] texture. The tensile stress relaxes already during Pd2Si growth. A comparison between the texture formation on SiOx and a-Si shows that the silicide layer serves as a template for the Pd layer, resulting in a surprisingly narrow texture of only 3° after 800 s Pd deposition. The texture formation of Pd and Pd2Si can be explained by the low lattice mismatch between Pd(111) and P...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    4
    Citations
    NaN
    KQI
    []