Flux Observer Model for Sensorless Control of PM BLDC Motor With a Damper Cage

2019 
Sensorless control methods are commonly employed to derive the rotor position and speed information indirectly in permanent magnet (PM) brushless motor drives. Thereinto, the simple yet effective flux observer method is extensively applied in a wide range of applications. However, damper cage is sometimes employed in the rotor of certain PM brushless motor. Normally, high-order current harmonic components occur in such damper cage during operations. The introduction of these extra current contents can significantly hinder the performance of the conventional flux observer. By applying Park transformation, the fundamental harmonic components of stator phase currents, flux linkages, and voltages during steady-state operation, become constants under rotor synchronous reference frame, while the currents in the rotor damper cage are still alternating. In this paper, an improved flux observer method is proposed to filter the harmonic contents under the rotor synchronous reference frame for PM brushless motor with rotor damper cage. The validity and performance of the proposed flux observer are verified by both numerical analysis and experimental results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    4
    Citations
    NaN
    KQI
    []