Detection loophole attacks on semi-device-independent quantum and classical protocols

2015 
Semi-device-independent quantum protocols realize information tasks - e.g. secure key distribution, random access coding, and randomness generation - in a scenario where no assumption on the internal working of the devices used in the protocol is made, except their dimension. These protocols offer two main advantages: first, their implementation is often less demanding than fully-device-independent protocols. Second, they are more secure than their device-dependent counterparts. Their classical analogous is represented by random access codes, which provide a general framework for describing one-sided classical communication tasks. We discuss conditions under which detection inefficiencies can be exploited by a malicious provider to fake the performance of semi-device-independent quantum and classical protocols - and how to prevent it.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    5
    Citations
    NaN
    KQI
    []