RNA interference of PPARγ using fiber-modified adenovirus vector efficiently suppresses preadipocyte-to-adipocyte differentiation in 3T3-L1 cells

2005 
Abstract The peroxisome proliferator-activated receptor (PPAR) γ is regarded as a “master regulator” of adipocyte differentiation and is abundantly expressed in adipose. To understand the biological role of PPARγ in adipose, RNA interference (RNAi) of PPARγ should be a powerful tool. 3T3-L1 cell line serves an excellent model to investigate the mechanism of preadipocyte-to-adipocyte differentiation. However, this cell line is difficult to transfect by plasmid vectors and viral vectors. We optimized the transduction of both 3T3-L1 preadipocytes and adipocytes by means of fiber-modified adenovirus (Ad) vectors. Among the various vectors tested, polylysine modification of the C-terminal of the fiber knob most markedly improved the transduction efficiency in both 3T3-L1 preadipocytes and adipocytes. Then, we examined whether fiber-modified Ad vectors with polylysine peptides expressing the small interfering RNA (siRNA) for PPARγ inhibit the differentiation of 3T3-L1 preadipocytes into adipocytes. Oil red O staining and measurement of glycerol-3-phosphate dehydrogenase (GPDH) activity indicated that the vectors effectively suppressed the differentiation of 3T3-L1 preadipocytes to adipocytes. These results suggested that the combination of fiber-modified Ad vectors containing polylysine peptides and RNAi is an effective tool for the study of the biological and physiological mechanism of adipogenesis in adiposity and diabetes using 3T3-L1 models. Ad vector-mediated RNAi for PPARγ should also be useful to clarify the biological role of the PPARγ pathway in various tissues in addition to adipose and for therapeutic application to a variety of diseases, including adiposity and diabetes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    36
    Citations
    NaN
    KQI
    []