Highly hydrophilic and anti-fouling cellulose thin film composite membrane based on the hierarchical poly(vinyl alcohol-co-ethylene) nanofiber substrate

2015 
Thin film composite (TFC) membrane is one of the most promising technologies in the purification field. In this study, a novel highly hydrophilic and anti-fouling cellulose TFC membrane was prepared based on the hierarchical poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofiber substrate. The morphology and hydrophilicity of the hierarchical PVA-co-PE nanofiber substrate and the cellulose TFC membrane were analyzed by SEM, FESEM, and contact angle goniometry. To optimize the performance of cellulose TFC membrane, the effects of coagulation bath, cellulose concentration and thickness of cellulose layer on the filtration efficiency, water flux as well as the mechanical property were studied. The anti-fouling property of the cellulose TFC membrane was analyzed by testing the change in the flux of membrane during repeated bovine serum albumin (BSA) filtrating and fouling process. The results show that the filtration efficiency of cellulose TFC membrane to BSA with the diameter of 2–10 nm could be above 97 %. Due to the hydrophilicity of the top cellulose layer, the cellulose TFC membrane exhibits excellent anti-fouling property by showing the 100 % flux recovery ratio.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    12
    Citations
    NaN
    KQI
    []