Mineral Surfaces As Agents of Environmental Proteolysis: Mechanisms and Controls

2019 
We investigated the extent to which contact with mineral surfaces affected the molecular integrity of a model protein, with an emphasis on identifying the mechanisms (hydrolysis, oxidation) and conditions leading to protein alteration. To this end, we studied the ability of four mineral surface archetypes (negatively charged, positively charged, neutral, redox-active) to abiotically fragment a well-characterized protein (GB1) as a function of pH and contact time. GB1 was exposed to the soil minerals montmorillonite, goethite, kaolinite, and birnessite at pH 5 and pH 7 for 1, 8, 24, and 168 h and the supernatant was screened for peptide fragments using Tandem Mass Spectrometry. To distinguish between products of oxidative and hydrolytic cleavage, we combined results from the SEQUEST algorithm, which identifies protein fragments that were cleaved hydrolytically, with the output of a deconvolution algorithm (DECON-Routine) designed to identify oxidation fragments. All four minerals were able to induce protei...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    7
    Citations
    NaN
    KQI
    []