Gradient Redox-responsive and Two-stage Rocket-mimetic Drug Delivery System for Improved Tumor Accumulation and Safe Chemotherapy

2019 
Recent drug delivery nanosystems for cancer treatment still suffer from the poor tumor accumulation and low therapeutic efficacy due to the complex in vivo biological barriers. To resolve these problems, in this work, a novel gradient redox-responsive and two-stage rocket-mimetic drug nanocarrier is designed and constructed for improved tumor accumulation and safe chemotherapy. The nanocarrier is constructed on the basis of the disulfide-doped organosilica-micellar hybrid nanoparticles and the following dual-functional modification with disulfide-bonded polyethylene glycol (PEG) and amido-bonded polyethylenimine (PEI). First, prolonged circulation duration in the bloodstream is guaranteed due to the shielding of the outer PEG chains. Once the nanocarrier accumulates at the tumoral extracellular microenvironment with low glutathione (GSH) concentrations, the first-stage redox-responsive behavior with the separation of PEG and the exposure of PEI is triggered, leading to the improved tumor accumulation and ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    34
    Citations
    NaN
    KQI
    []