Hybrid superconductor-semiconductor systems for quantum technology

2020 
Superconducting quantum devices provide excellent connectivity and controllability, while semiconductor spin qubits stand out with their long-lasting quantum coherence, fast control, and potential for miniaturization and scaling. In the last few years, remarkable progress has been made in combining superconducting circuits and semiconducting devices into hybrid quantum systems that benefit from the physical properties of both constituents. Superconducting cavities can mediate quantum-coherent coupling over long distances between electronic degrees of freedom such as the spin of individual electrons on a semiconductor chip and, thus, provide essential connectivity for a quantum device. Electron spins in semiconductor quantum dots have reached very long coherence times and allow for fast quantum gate operations with increasing fidelities. We summarize recent progress and theoretical models that describe superconducting–semiconducting hybrid quantum systems, explain the limitations of these systems, and desc...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    135
    References
    0
    Citations
    NaN
    KQI
    []