Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression

2019 
TAZ promotes cell proliferation, development, and tumorigenesis by regulating target gene transcription. However, how TAZ orchestrates the transcriptional responses remains poorly defined. Here we demonstrate that TAZ forms nuclear condensates via liquid-liquid phase separation to compartmentalize its DNA binding co-factor TEAD4, the transcription co-activators BRD4 and MED1 and the transcription elongation factor CDK9 for activation of gene expression. TAZ, but not its paralog YAP, forms phase-separated droplets in vitro and liquid-like nuclear condensates in vivo, and this ability is negatively regulated by Hippo signaling via LATS-mediated phosphorylation and mediated by the coiled-coil domain. Deletion of the TAZ coiled-coil domain or substitution with the YAP coiled-coil domain does not affect the interaction of TAZ with its partners, but prevents its phase separation and more importantly, its ability to induce target gene expression. Thus, our study identifies a novel mechanism for the transcriptional activation by TAZ and demonstrates for the first time that pathway-specific transcription factors also engage the phase separation mechanism for efficient transcription activation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    33
    Citations
    NaN
    KQI
    []