Non-Linear Propagation of Ultrashort Mid-IR Pulses

2019 
Many atmospheric applications such as free-space communication or spectroscopy require targeted delivery of high-energy ultrashort pulses with a good beam quality. Often atmospheric turbulences complicate this task, causing random variations of the refractive index and resulting in fluctuations of light intensity on the target. Propagation of light in filamentation regime, when intensity is clamped, to a certain extent helps to overtake this problem, but brings ionization-related problems, such as energy loss, temporal pulse splitting, etc. Moreover, maximum peak power P peak , which can be delivered in a single filament is limited to about ten critical powers of self-focusing P crit , after which multiple filamentation and hence small-scale beam distortions take place. In the case of Ti:Sapphire drivers delivering 40-fs, 800-nm pulses, the energy in a single filament in air doesn't exceed 1 mJ, unless special conditions are applied [1]. However, since P crit ∼λ2 (λ is the driver wavelength), essentially more energy can be deposited in a single filament driven by 3.9-μm pulses [2]. Furthermore, mid-IR spectral range is beneficial in virtue of lower ionization rates and higher resistance to modulation instabilities and scattering by natural atmospheric obstacles, such as water droplets [3]. Finally, a unique combination of high atmospheric transparency and anomalous dispersion of air between 3.6–4.2 μm promote an opportunity for a lossless high-energy ultrashort pulse delivery and simultaneous solitonic self-compression [4]. However, multiple molecular resonances responsible for the anomalous dispersion also complicate filamentation dynamics by adding a new channel of energy loss, namely nonlinear enhanced absorption losses [2,5], when mainly stimulated rotational Raman scattering (SRRS) governs spectral dynamics dominated by an essential spectral redshift and immediate absorption of newly generated spectral components by CO 2 , having vibrational resonance in the vicinity of 4.2 μm. Due to this non-linearly enhanced absorption up to 50% of energy can be lost over several meters of propagation of 30 mJ 130-fs pulses [2]. However, since the intrapulse SRRS is sensitive to a temporal spacing between spectral components, pre-chirping of drivers pulses can help to reduce and control the energy loss. Moreover, we have demonstrated, that a proper choice of the chirp can also lead to ∼5-fold self-compression in time and postponed onset of filamentation in space, what fulfils a goal of targeted high-energy ultrashort pulse delivery.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    0
    Citations
    NaN
    KQI
    []